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The persistence exponert, is defined byN:~t~?, wheret is the time since the start of the coarsening
process and the “no-flip fraction,Ng, is the number of points that have not seen a change of “color” since
t=0. Here we investigate numerically the persistence exponent for a binary fluid system where the coarsening
is dominated by hydrodynamic transport. We find that follows a power law decayas opposed to expo-
nentia) with the value ofd somewhat dependent on the domain growth rate {¢, whereL is the average
domain sizg in the rangef=1.23+0.1 («=2/3) to #=1.37+0.2 (a«=1). Thesea values correspond to the
inertial and viscous hydrodynamic regimes, respectively.

PACS numbegs): 82.20.Wt, 64.60.Ht, 64.75.g

[. INTRODUCTION spinodal decomposition in a binary fluid mixture, other re-
sults of which are reported elsewhd®&9]. Brief details of
Persistence exponents can be defined for systems wheiige theoretical model and simulation method are given first,
there is an order parameter whose time evolution can b#llowed in Sec. Il by a theoretical approach to persistence
followed at each pointx, in the system. It is most easily behavior in this system. In Sec. IV the numerical analysis is
understood for an order parametei(x) that takes just two described, with the results for the flip rate given in Sec. V
equilibrium valueg(spin up/dowm, but the concept is easily and estimates of the persistence exponent in Sec. VI. Finally,
generalized(e.g., red/blue fluid for binary fluid mixturgs in Sec. VII, the results are summarized.
The density of points for which s§e(x)—(¢)] has not
changed sign up to timeas the system coarsens, the “no- II. MODEL AND SIMULATION
flip fraction,” Ng, will, for a conserved order parameter, or o ) ) .
a quench to zero temperature, typically decay as a power A Symmetric binary fluid mixture differs from a purely
law, N.~t ™, whered is the persistence exponent. diffusive system, such as an alloy, in that the phase separa-
Persistence exponents were first investigated by Brayon is assisted by hydrodynamics. There is an initial diffu-
Derrida, and Godehe [1,2], in the context of one- Sive period during which an interlocking structure of single-
dimensional diffusive systems. For example, for thetate ~fluid regions is formed, separated by sharp interfaces. The
Potts model in one dimension, Derridaal.[2] found from  interfaces then take over as the driving force, displacing the
simulations, and later proved analyticalBj, that 9= 3/8 for fluid as they flatten and shrmk, leading to a much more rapid
q=2, #=0.53 forq=3, andg—1 asq—<. It is also pos- domain growtrl1/3rate of ~t (in 3D) compared to diffusive
sible to define persistence exponents for systems with norrowth ofL~t whereL is the average domain size. This
conserved order parameters at finite temperature by coardgear growth was first predicted by Siggia0]. Furukawa
graining[4]. [11] later predicted that as the II’]GI’;I/«’;J effects came into play,
As with most critical systems, analytical calculations arethe growth rate would slow ta ~t“*. These growth rates
difficult; a few exact results existl,3]. Some mean field have been observed in simulati8,12] and linear growth
calculations have been dori6], however, mean field ap- Nas been observed experimentdlhg]. Recent SUQ%SUO”S
proximations also predict that is not independent of the that the growth rate may slow still further to~t"* (or
other critical exponents. Mean field theory assumes that thélowed [14] are not supported by our simulation wd& or
order parameter dynamics is a Markov process, and Derridi€0ry[15], and will not concern us here.
et al. and Majumdaet al.[6,5] argue that, in general, this is For numerical work, we use the following model free en-
not the case, and thugis, in fact, a new critical exponent €9y
independent of the four already knowtwo static exponents, A B B
the domain coarsening exponeat,and the exponent for the F:f dr( 24— Inp = VAR, (D
critical slowing-down of the correlations as the critical point 2 4 2
is reached from a mixed staf&]). ) ) ) _
In this paper we present an investigation of the persisln which A, B, and « are parameters that determine the in-
tence behavior of our simulation of three-dimensiotgd)  terfacial width €=«/2A), and interfacial tension o
=(8xA%9B?)2] ¢ is the usual order parametéhe nor-
malized difference in number density of the two fluid spe-

*Present address: Department of Physics and Applied Physicsies; p is the total fluid density, which remair(irtually)
University of Strathclyde, Glasgow G1 1XQ, United Kingdom.  constant throughouf16,17. We chooseA/B=1 so ¢=
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lation unit9 to distinguish the different simulation runs. The
viscous regime corresponds ltg>1, the inertial regime to
L,<0.001, with intermediate values corresponding to the
crossover region.

Ill. FLIP-RATE MODEL

For the 3D binary fluid system it is unrealistic to expect to
derive anything but the simplest approximate results using a
theoretical approach. However, this will serve to illuminate
the persistence-related quantities under discussion. The
simple results to be derived in this section will then be of
assistance in the numerical analysis that follows.

Consider the step by step{=1 in simulation unitstime
0 . . . . . . . evolution of the value of the order parameter at a single point

0 2000 4000 6000 ta(‘:i‘;ﬁe ;t"e“gg) 12000 14000 16000 18000 as the system phase separates and coarsens from the initially
int completely mixed state. A typical example is represented

FIG. 1. L vs t for the runs withL,=5.9 (circles and 0.0003 Schematically in Fig. 2. In order to focus on the behavior in
(diamonds. The region used for fitting is delimited bly,,,<L the hydrodynamic regime, an initial state is chosen at a ref-
<L na=64, and the fitgsolid) (to =1 anda=2/3, respectively ~ €rence pointfg,, a time corresponding to when domains
are projected back to show the intercepis, have coarsened to a size~L,,, that marks the onset of

purely hydrodynamic behavididetermined by the point at
+1 in equilibrium. Our simulatiofi18] uses a lattice Boltz- Which diffusive growth has fallen below 298]). The “no-
mann(LB) method[19,16 with a cubic lattice with nearest fliP fraction,” Ne(t/tsr) is then defined as the fraction of
and next-nearest neighbor interactia®3Q15. It was run  Sites that have not changed color sitgg:. Scaling byt
on Cray T3D and Hitachi SR-2201 parallel machines withiS €quivalent to choosing units such that~ 1, which is in
system sizes up to 286 any case the value of the initial reference time used in other

The data used for the analysis of persistence behavictiudies. _ _ _
corresponds to that used in our earlier studies of the growth N order to derive an approximate functional form for
exponentg8]. Details of the simulation parameters for each’\!F(t/ tstar), it 'S_US‘_EfU| to define two .further _quantltle(s;) the
run, and selection of usable data can also be found in RefliP rate, Pe(t) is simply the proportion of sites that changed
[8]. The filters used to eliminate diffusive and finite size color between time step-1 andt, and, (ii) the flip prob-
effects mean that the good data from any single®266 lies ~ @bility, P(t,t,), is the probability that a site changes color at
within 20<L <64 in units of the lattice spacing. The data fime t, given that it last changed color at ting
was fitted toL=b(t—t,,)®, whereb is a prefactor deter-  These two quantities are related as follows:
mined by the physical parameters angl is a nonuniversal
adjustment to the zero point on the time scale dependent on t
the initial diffusive period. Figure 1 shows two sample runs PF('I)=J’ dty Pe(ty) P(t,ty), (2
and the fitted curves. The values®fandt;, will be used in tint
the subsequent analysis of the persistence behavior. By using
characteristic length [Lo=7%/(po)] and time [t,  where the sum over discrete time in our simulations has been
=5°/(po?)] scales uniquely defined by the physical param-approximated by an integral. Equati¢®) says that the flip
eters, the data from all the runs was combined into a singleate at timet is given by all the points that last flipped at time
L, t plot covering a linear region, through a broad crossovert; and are due to flip again at tintgi.e., P(t,t;), integrated
to t?3 [8]. The value of the growth exponent, where the over all possible prior flip times;,<t;<t, and weighted by
domain sizel ~t*, was found to range from 1.0 to 0.67, the number of sites with prior flip timg,, i.e., Pg(t1). The
thus the data spans the full range from viscous to inertialower limit of the integral is set tt,,; because, as can be seen
hydrodynamic growth. The breadth of the crossover regiorfrom Fig. 1,t;,; corresponds to the natural zero point on the
justifies the use of a single effective exponestto fit any  time scale, the time at whickignoring diffusion and the
single run. It is convenient to use the valuelgf (in simu- finite width of the interfaces the domain size would be zero

(blue)/|\ order parameter

— I

4 t (red)
diffusive region T T hydrodynamic region T

interfaces forming domain size L > L

tine to t

FIG. 2. Persistence timeline.
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so that, in effect, every site flipped &t t;,,. Hencefortht; An expression can now be written down for the “no flip

will be usually be set to zero, to simplify the algebra. fraction,” Ng(t/tsiar), which is the fraction of sites that have
Equation(2) is an integral equation in two unknown func- not changed color sincg,,

tions, P(t,t;) and Pg(t). A solution for P(t,t;) can be ob-

tained by making some assumptions about the asymptotic start

form of the simpler quantityPg(t), for the 3D hydrody- Nsz dtlf dty P(to,t1) Pe(ty), (7)

namic system. The dynamics are determined by the basic

scaling growth law,L=b(t—t;,), where the prefactob

depends on the system paramet@tsnsity, viscosity, inter-

facial tension. Once the initial diffusive period is over, and

the domains of red and blue fluid are separated by well-

formed interfaces, lattice sites change color from red to blue . .

V\{hen an |nt.erface moves across t'hem as the domains grow in NF=Caf standtl (B— 1)t'fLZJ dtztgﬁ

size. The flip ratePg(t), is thus given by the rate at which

the interface moves through the system sweeping out a vol- )

ume of points that change color. So, an estimate of the area _C_“(@t) 0>0 ®)

t ] :

i.e., we count every point whose last flip was beftgg,and
whose next flip is after timd. Substituting for P and
P(t,,t1) gives,

of the interface, and its average speed, will yield an estimate 0
for Pe(t). This is the “flip-rate model.”

The area of the interface is given approximatelyAft)  settingd=(B—1) as the persistence exponent. The flip-rate
=c_V/L, whereV is the system volume arg] is a prefactor model has thus provided an expression gr that has the
of order unity. As the system coarsens, the interfaces mus§xponent,, in the prefactor as well as being the asymptotic
move to accommodate the enlargement of the domains. Ssower of the decay. This puts helpful constraints on the data
long as there is only one length scale in the domain structureanalysis, although for it to be really useful, the prefactor,
the speed at which the interface moves will be of ordefin Eq. (3) has to be pinned down as precisely as possible. In
dL/dt. Also, it has been showf@] that the average fluid a log-log plot,
velocity is comparable in magnitude witiL/dt, so the
speed of the interface can be estimatedcpylL/dt, where logNg=log(ca/ 6) — 6 log(t/tgan (9
¢, is another prefactor of order unity. The volume swept out
per unit time will beA(t) ¢, dL/dt. Combining bothc, and
¢, into a single prefactor, the flip rate per unit volume will
be approximately,

so plottingNg againstt/t,Should give a straight line when
viewed log-log, with slope- 6, for t>tg,. The initial data
neart=tg, will depart from this asymptotic behavior and
1dL ca tend toNg=1 _because by definit_ion nothing flipped yet for

= 3) [=lstar The fit to the asymptotic slope should, however,
Ldt t have an intercept ata/ 0 for t=tg.

It is possible to go on to define a hierarchy of persistence

This approximation forPg(t) diverges att=0. In the dis- quantities, of whichNg is the first[2]. The “one flip frac-
crete time of our simulations, we start with time stepl so  tion,” O is the density of points that have changed color
no divergences arise; in the continuum approximations it issxactly once since timg,,. Within the flip-rate model, an
appropriate to start at time=0, thus we will need to take expression foOf for this system can be derived in the same

Pe(t)=c—

care that no integrals diverge at their lower limits. way as forNg;
SubstitutingP(t) =cal/t into Eq. (2) gives
o W= | “at, [ 7ty [t P )
f dtlt— P(t,tl)zl, (4) tstart
0 1
XP(ts,t1) Pe(ty). (10)
where have sdt,;=0. Equation(4) has solutions foP(t,t;)
of the form The “one flip” occurs at timet; with tg,<ti<t,. The
probability of an initial flip att; with 0<t;<tg,, then flip-
p(t’tl):(ﬁ_l)tlﬁ—lt—ﬁ, B8>1, (5) ping at timet; is P(t;,t;). The probability of flipping again

at timet, is then P(t,,tf) P(ts,t;), provided the two flip
events are independent of each otfser the probabilities can
be multiplied. In other words, this model assumes that the
flip probability P(t,,tf) is only dependent on the last time
the site flipped, so it has no memory of earlier flips. This
" requires a Markov process for the coarsening dynamics,
dt P(t,ty) =1, (6)  which Derridaet al. and Majumdaret al. [6,5] claim is not
t generally the case for the nonhydrodynamic systems they
have considered. This therefore constitutes another untested
(i.e., all sites do, eventually, fligs also satisfied, sB(t,t;) assumption in the flip-rate model described here. Substitut-
is a properly normalized probability. ing for P andP(t,,t;) as before gives

where B is an arbitrary exponent, as can readily be verified
by substitution. We hav@(t,t;)—0 for t;—0 so the inte-
gral is well behaved at;=0. The condition,
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1 0.003 . .
**; — L, =0.0003 single step data
} ------ L, = 0.00095 + stride = 100 post processing
-——- L, =0.01
—-—-L,=0.15 :
S 0.002 |
- X w B
p
o ®
T 2 ; {
o = i i
< 0.001 i
i
041 | S
0 L L L
0 1000 2000 3000 4000
1 10 t (time steps, t,,, = 1500)
(t - tint) / tslan
. . FIG. 5. Flip rate,Pg, for a 96’ system, single stefdots and
FIG. 3. No-flip fraction,Ng, for all runs. Atgyige=100 stepgcrosses
t? t0 . - : :
o _f dt f f sta” ts 1 more complicated and difficult to interpret both theoretically
F % )t b t; g 170 and numerically. Therefore, since our main work is with the
) three-dimensional system, the two-dimensional form of the
_Ca Lstart 1-1n Lstart (11) theory will not be pursued further here.
0\t t )]
after integrating by parts. This has a dominant logarithmic IV. NUMERICAL ANALYSIS

term so it does not have an asymptotic power law de@ay.
contrast, in the 1D Ising modeD( appears to have the same  The flip-rate model just described will now be used to
asymptotic behavior all-, see Refs[2,3].) This could, of guide the analysis of the data from our spinodal decomposi-
course, be a result of the limitations of the flip-rate modeltion simulations. The data from the largest (256uns is
however, the simulation results suggest that the asymptotitypically saved every 200 to 500 time stefidyiqe. It is also
behavior ofO¢ is different from that ofNg (see Figs. 3 and coarse grained from a 23%@attice down to 128 by averag-
4). Again, this expression is only valid far>tg,. Sinceé  ing over groups of eight neighboring lattice points. This data
Or—0 for t—tsae. As with N, the (same critical expo-  can be used to calculate the four key quantities discussed in
nent ¢ appears both as an exponent and as a prefactor, thigge previous sectiorPr, P(t;,t,), N, andOg, provided
providing an extra constraint on any fits to simulation data. the spatial and temporal coarse graining makes no significant
Nothing in the theory so far is specific to three spacegifference to the results.
dlmenS|on.s However, in two- dlmensmn_al binary fluid sys- 14 investigate temporal coarse graining, a special run on a
tems, the 'r?terf"?‘ce does not _compl_etely '”terconf@l SO 963 grid was done with the key quantities calculated every
the approximationPe=ca/t is unlikely to work without e step. This extra computation significantly slows down
modification. Furthermore, 2D hydrodynamic coarseningne computer run time so it is not practical to perform larger
shows nonscaling feature20] which make the analysis simulations with single-step calculations. The results from a
] single-step calculation were then compared with the same
—— L, =0.0003 run analyzed over a stride of 100 time steps, see Fig. 5. The
______ L, = 0.00095 result of this comparison showed excellent agreement be-
--—- L, =0.01 tween the single-step and strided estimateB(ft). In fact,
--=-L1,=0.15 the errors introduced by analyzing only evekygiqe Steps
*L, =095 rather than every single step arise from miscounting sites that
X,

flip more than once in that period. If the flip rateg(t), is
small then the number of multiple flips will be much smaller
still, so the errors will negligible. In all runs analyzeB
was found to be small even over the largasg;qe Used, i.e.,
PeAtgige<1 (a value of 1 would mean every site flipped
The shape ofPg(t) in Fig. 5 for timest<tg,. Clearly
shows a transition from diffusive to hydrodynamic behavior
in the initial fall (diffusion), rise (interfaces start to moye
1 10 and fall again(hydrodynami¢. Thus Pg(t) is a sensitive
-t )/, indicator of the system dynamics, and the choicetf;
=1500 in this 98 system is confirmed to be located, as
FIG. 4. No-flip fraction,O¢, for all runs. desired, near the beginning of the hydrodynamic regime but

O, one—flip fraction

0.1
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TABLE I. Summary of results foc and 6.

e L, =0.0003
= L, =0.00095
AL, =0.01
vL,=0.15
+L,=0.95
xL,=59

* |, =36

flip rate, P

_k
<
L

1000 10000

t-t, (time steps)

FIG. 6. Flip rate,Pg, for simulation runs as identified bly,
values in key, log-log plot. Also shown for comparisont ahd
1.5¢4.

not too close to the transition from diffusive behavior. The
effect of spatial coarse graining was checked by comparin
the results of analyzing strided data from 32&d 258 runs

with identical parameters apart from system size. Excelle

P(t,tsiad . Which can be explained by poor statistics in this
region. The conclusion, therefore, is that spatial and tempor

introduce significant errors into the results.

From the main simulation data, good statistics Ry,
Ng, and Og can be obtained, as every lattice point can b
assessed according to if/iwhen it next flips aftgg:. The
statistics are not so good for estimatiRgt,t.,), because
the reference base is reduced to only those sites that fl
betweert g, and Atiqe rather than the whole system; recall
that P(t,ts.9 refers to the first flip happening exactly at

tstart-

V. FLIP RATE

€,

Lo a c 0
0.0003 0.67 15-19 1.20 - 1.23
0.00095 0.67 15-22 1.20 - 1.32
0.01 0.75 1.3-19 1.25 - 1.40
0.15 0.80 1.0-15 1.15-1.24
0.95 0.95 085-1.4 1.20 — 1.40
5.9 1.0 085-1.4 1.25 - 1.50
36 1.0 0.85-1.3 1.30 — 1.55

If this difference in the value of is real, it implies that
the geometry of the separating domains is different between
the viscous and inertial regimes. Any such difference is not
apparent to the eye in visualizations of the interfa2a)|.
There is some evidence from analysis of the structure factor
[9] that there is a structural difference in the domain struc-
ture, but it is unclear whether this is enough to account for
the observed difference in the value ®fHowever, there is
another possible interpretation of the data, which is that the
flip rate actually exceedsa/t for the inertial regime runs.
%or once the viscosity is low enough for inertial effects to

come significant, the interface may exhibit capillary exci-

e
- . ations. This oscillation of the interface could increase the
agreement was found everywhere except in the tail o

easured flip rate as sites near the interface repeatedly flip
ack and forth, but without contributing to the sweeping that

Femoves sites from the “no flip” category. If capillary exci-
coarse graining on the scale used in this analysis does ne, b gory priary

tions have a significant effect on the flip rate, this part of
the flip rate needs to be discounted in the subsequent fitting
to determine the persistence exponent. Since the extent of
any excess flip rate cannot be determined at this stage, a
variable prefactorg, has therefore been carried through the

ifFi)tting process foré.

VI. PERSISTENCE EXPONENT

The “no flip fraction,” Ng, is the primary quantity of
interest in this work, being the quantity from which the per-
sistence exponert, is definedNg~t~ %, The simulation re-
sults forNg, with the time scaled ag { t;,)/tsiarand points

In order to make full use of the model presented in Sec.

I, it is necessary to investigate whether the flip rate really

follows the approximate theoretical expressi®iy=calt,
Eq. (4), and whether the prefactar, can be evaluated suffi-

ciently accurately from the simulation data to allow a

strongly constrained fit to be done féiin the analysis oNg
and O . Figure 6 showsP for each simulation run in a
log-log plot, with 1t and 1.5f also shown for comparison.
The prefactorg, clearly varies somewhat over time, and with

a, although the variation with time can partly be explained

since early timest~tg, are expected to differ from
asymptotic behavior.

To determine the values and variation Gnmore accu-
rately, a linear plot of the flip ratePg, scaled by {

—tiw)/a is shown in Fig. 7. It can be seen that the results
roughly split into two groups corresponding to the runs

found to be in the viscous and lower crossover regidngs (
=0.1), with prefactors arounc=1.25, and runs in the iner-
tial regime (,=0.01), withc=2.2.

22t ————?—.—.:;;;;. oo
5| - .~ e L,=0.0003 |
3 o et . to = 8.8?095
= 1. . blo=0
- 8 o vL,=0.15
= A e +L,=095
T16f a, ok
n_u. ‘i ___________________________ {1 P
“14f 8 ° T *h=38
% ' 4 ***********
;_%. 1.2 +;;t¢><’< *******a«
1 L
0.8 : : :
0 5000 10000 15000 20000

t-t, (time steps)

FIG. 7. Flip rate Pg, rescaled byt(—t;,)/« on a linear plot so
values of the prefactor, can be read off the ordinate axis.
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1 : 16
_ 15} +
c
[
j =
= 3 ’
= £1af T
S 3 '
5 e _
£ 813/ | 1
w
g g —— 1
= 1 1
e ® 2 T2 1
0.1
1.1 1 1 I 1
0.6 0.7 0.8 0.9 1 1.4

10000 o, growth rate exponent
t-t, (time steps) ) ) ]
FIG. 9. Persistence exponert, against spinodal growth rate
FIG. 8. Fitted curves foNg for the run withL,=0.0003. The  exponentg, from simulation runs. The error bars are the rangé of
no flip fractionNg (squarescalculated from the numerical data is from Table I, and the error estimates feof 10% (viscous regimg
shown with the upper, median, and lower fits to E8) using, and 5%(crossover and inertial regime9].
respectively,c=1.9, #=1.23 (dashed ling c=1.7, §=1.215
(solid ling); andc=1.5, #=1.21 (dotted ling; from Table I.
and rises nearer to 2.0 for the inertial regime. However, a
. . . value ofc=2.2 as implied by the measured flip rate for the
for times at whichL <Ly, or L>64 removed, are plotted in e rtia| regime appears to be inconsistent with the persis-
Fig. 3. The runs in t_he |nert|_al regime have tails that fall Otence data foNg, Of, and P(t,tyy). The flip rate is thus
aroundNg = 0.08, while the viscous runs stépach domain g riciently sensitive to distinguish between viscous and in-
sizeL.=64) at aroundNg=0.15. There is thus barely one giig| regime dynamics, and suggests the presence of some
decade within which to estimate the slope of the tail. Al-mechanism such as capillary waves in the inertial regime that

though a simple linear fit cannot produce a very accCuraiajses the measured flip rate above that predicted by the
result, superficial inspection suggests thatis slightly growth of the domains.

greater than unity, and fairly reproducible.

If we could use a fixed value of the prefactay, with
confidence, the fit could be constrained to interceputdts, VII. CONCLUSIONS
Eq. (9). Instead, a family of fits was dor{@1], covering a In this investigation of the persistence exponents for a 3D
range of values of the prefactar, and these were compared hydrodynamic spinodal system, it has been observed that the
with a similar family of fits for the one flip fractiorQr. As  decay of the “no-flip fraction,”Ng, is a power law(as
can be seen in Fig. ¢ at best falls to only 0.2 by the end opposed to exponentiallt has not been possible to produce
of the simulation data, so it cannot be regarded as having very accurate determination of the persistence expofient,
reached asymptotic behavior yet. TBg data was therefore put limits have been placed on the likely value, and it has
used only to confirm the direction in whicNg is tending  peen shown that some variation with the effective growth
towards its asymptote. From this fitting procedure, a range oéxponent,«, as one crosses slowly from viscous<1) to
consistent values of both and ¢ were obtained, and these inertial («=2/3) coarsening, should be allowed for in any
are summarized in Table I. future studies. The best estimatefor the viscous regime

A sample plot for the run with. ,=0.0003 withNg and  (4=1), is #=1.37+0.2. From the point of view of funda-
the fitted expression in E48), with high, median, and low mental critical exponents, the value 6fin the inertial re-
values ofc and 6, is shown in Fig. 8. Fits toP(t,tsad  gime is perhaps more significant, since this(as least on
= 0/t(tar/t) were also done, producing values @fcon-  current evidendethe asymptotic behavior for spinodal de-
sistent with those determined fromM and Og. Since  composition, and here the best estimategis 1.23+0.1.
P(t,ts@a does not depend onor a, this is a useful check These represent the first estimateséoin a system domi-
for consistency, but because of the poorer statistics fopated by hydrodynamics rather than diffusion. However, the
P(t,tstard, NO improvement in the range of values ®®was  error limits quoted here do not allow for systematic errors
obtained by this extra step. arising from the use of the flip-rate model itself. More accu-

The complete set of estimates f@from Table | is shown  rate determination from simulations would likely require sig-
against the growth exponent in Fig. 9, with error bars nificantly larger system sizes, which is difficult to envisage
indicating the range of values obtained. The results are comt present computing power.
sistent with the persistence exponeft, lying somewhere
around 1.37 for the viscous regime and 1.23 for the inertial
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