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Persistence exponents in a three-dimensional symmetric binary fluid mixture
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The persistence exponent,u, is defined byNF;t2u, wheret is the time since the start of the coarsening
process and the ‘‘no-flip fraction,’’NF , is the number of points that have not seen a change of ‘‘color’’ since
t50. Here we investigate numerically the persistence exponent for a binary fluid system where the coarsening
is dominated by hydrodynamic transport. We find thatNF follows a power law decay~as opposed to expo-
nential! with the value ofu somewhat dependent on the domain growth rate (L;ta, whereL is the average
domain size!, in the rangeu51.2360.1 (a52/3) to u51.3760.2 (a51). Thesea values correspond to the
inertial and viscous hydrodynamic regimes, respectively.

PACS number~s!: 82.20.Wt, 64.60.Ht, 64.75.1g
h
b

y

o-
or
w

ra

o
a

re

-

th
ri
s
t
,

int

sis

e-

rst,
ce
is
V

ally,

y
ara-
u-
le-
The
the
pid

is

ay,

s

n-

in-

e-

sic
I. INTRODUCTION

Persistence exponents can be defined for systems w
there is an order parameter whose time evolution can
followed at each point,x, in the system. It is most easil
understood for an order parameter,f(x) that takes just two
equilibrium values~spin up/down!, but the concept is easily
generalized~e.g., red/blue fluid for binary fluid mixtures!.
The density of points for which sgn@f(x)2^f&# has not
changed sign up to timet as the system coarsens, the ‘‘n
flip fraction,’’ NF , will, for a conserved order parameter,
a quench to zero temperature, typically decay as a po
law, NF;t2u, whereu is the persistence exponent.

Persistence exponents were first investigated by B
Derrida, and Godre`che @1,2#, in the context of one-
dimensional diffusive systems. For example, for theq-state
Potts model in one dimension, Derridaet al. @2# found from
simulations, and later proved analytically@3#, thatu53/8 for
q52, u.0.53 forq53, andu→1 asq→`. It is also pos-
sible to define persistence exponents for systems with n
conserved order parameters at finite temperature by co
graining @4#.

As with most critical systems, analytical calculations a
difficult; a few exact results exist@1,3#. Some mean field
calculations have been done@5#, however, mean field ap
proximations also predict thatu is not independent of the
other critical exponents. Mean field theory assumes that
order parameter dynamics is a Markov process, and Der
et al. and Majumdaret al. @6,5# argue that, in general, this i
not the case, and thusu is, in fact, a new critical exponen
independent of the four already known~two static exponents
the domain coarsening exponent,a, and the exponent for the
critical slowing-down of the correlations as the critical po
is reached from a mixed state@7#!.

In this paper we present an investigation of the per
tence behavior of our simulation of three-dimensional~3D!

*Present address: Department of Physics and Applied Phy
University of Strathclyde, Glasgow G1 1XQ, United Kingdom.
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spinodal decomposition in a binary fluid mixture, other r
sults of which are reported elsewhere@8,9#. Brief details of
the theoretical model and simulation method are given fi
followed in Sec. III by a theoretical approach to persisten
behavior in this system. In Sec. IV the numerical analysis
described, with the results for the flip rate given in Sec.
and estimates of the persistence exponent in Sec. VI. Fin
in Sec. VII, the results are summarized.

II. MODEL AND SIMULATION

A symmetric binary fluid mixture differs from a purel
diffusive system, such as an alloy, in that the phase sep
tion is assisted by hydrodynamics. There is an initial diff
sive period during which an interlocking structure of sing
fluid regions is formed, separated by sharp interfaces.
interfaces then take over as the driving force, displacing
fluid as they flatten and shrink, leading to a much more ra
domain growth rate ofL;t ~in 3D! compared to diffusive
growth of L;t1/3, whereL is the average domain size. Th
linear growth was first predicted by Siggia@10#. Furukawa
@11# later predicted that as the inertial effects came into pl
the growth rate would slow toL;t2/3. These growth rates
have been observed in simulation@8,12# and linear growth
has been observed experimentally@13#. Recent suggestion
that the growth rate may slow still further toL;t1/2 ~or
slower! @14# are not supported by our simulation work@8# or
theory @15#, and will not concern us here.

For numerical work, we use the following model free e
ergy:

F5E dr H 2
A

2
f21

B

4
f41 r̃ ln r̃1

k

2
u¹fu2J , ~1!

in which A, B, andk are parameters that determine the
terfacial width (j5Ak/2A), and interfacial tension@s
5(8kA3/9B2)1/2# f is the usual order parameter~the nor-
malized difference in number density of the two fluid sp
cies!; r̃ is the total fluid density, which remains~virtually!
constant throughout@16,17#. We chooseA/B51 so f5
s,
4029 © 2000 The American Physical Society
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61 in equilibrium. Our simulation@18# uses a lattice Boltz-
mann~LB! method@19,16# with a cubic lattice with neares
and next-nearest neighbor interactions~D3Q15!. It was run
on Cray T3D and Hitachi SR-2201 parallel machines w
system sizes up to 2563.

The data used for the analysis of persistence beha
corresponds to that used in our earlier studies of the gro
exponents@8#. Details of the simulation parameters for ea
run, and selection of usable data can also be found in
@8#. The filters used to eliminate diffusive and finite si
effects mean that the good data from any single 2563 run lies
within 20&L<64 in units of the lattice spacing. The da
was fitted toL5b(t2t int)

a, where b is a prefactor deter-
mined by the physical parameters andt int is a nonuniversal
adjustment to the zero point on the time scale dependen
the initial diffusive period. Figure 1 shows two sample ru
and the fitted curves. The values ofa andt int will be used in
the subsequent analysis of the persistence behavior. By u
characteristic length @L05h2/(rs)# and time @ t0
5h3/(rs2)# scales uniquely defined by the physical para
eters, the data from all the runs was combined into a sin
L, t plot covering a linear region, through a broad crossov
to t2/3 @8#. The value of the growth exponent,a, where the
domain size,L;ta, was found to range from 1.0 to 0.67
thus the data spans the full range from viscous to iner
hydrodynamic growth. The breadth of the crossover reg
justifies the use of a single effective exponent,a, to fit any
single run. It is convenient to use the value ofL0 ~in simu-

FIG. 1. L vs t for the runs withL055.9 ~circles! and 0.0003
~diamonds!. The region used for fitting is delimited byLmin,L
,Lmax564, and the fits~solid! ~to a51 anda52/3, respectively!
are projected back to show the intercepts,t int .
or
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lation units! to distinguish the different simulation runs. Th
viscous regime corresponds toL0.1, the inertial regime to
L0,0.001, with intermediate values corresponding to
crossover region.

III. FLIP-RATE MODEL

For the 3D binary fluid system it is unrealistic to expect
derive anything but the simplest approximate results usin
theoretical approach. However, this will serve to illumina
the persistence-related quantities under discussion.
simple results to be derived in this section will then be
assistance in the numerical analysis that follows.

Consider the step by step (Dt51 in simulation units! time
evolution of the value of the order parameter at a single po
as the system phase separates and coarsens from the in
completely mixed state. A typical example is represen
schematically in Fig. 2. In order to focus on the behavior
the hydrodynamic regime, an initial state is chosen at a
erence point,tstart, a time corresponding to when domain
have coarsened to a sizeL;Lmin that marks the onset o
purely hydrodynamic behavior~determined by the point a
which diffusive growth has fallen below 2%@8#!. The ‘‘no-
flip fraction,’’ NF(t/tstart) is then defined as the fraction o
sites that have not changed color sincetstart. Scaling bytstart
is equivalent to choosing units such thattstart51, which is in
any case the value of the initial reference time used in ot
studies.

In order to derive an approximate functional form f
NF(t/tstart), it is useful to define two further quantities,~i! the
flip rate,PF(t) is simply the proportion of sites that change
color between time stept21 and t, and, ~ii ! the flip prob-
ability, P(t,t1), is the probability that a site changes color
time t, given that it last changed color at timet1.

These two quantities are related as follows:

PF~ t !5E
t int

t

dt1 PF~ t1! P~ t,t1!, ~2!

where the sum over discrete time in our simulations has b
approximated by an integral. Equation~2! says that the flip
rate at timet is given by all the points that last flipped at tim
t1 and are due to flip again at timet, i.e., P(t,t1), integrated
over all possible prior flip times,t int,t1,t, and weighted by
the number of sites with prior flip timet1, i.e., PF(t1). The
lower limit of the integral is set tot int because, as can be see
from Fig. 1, t int corresponds to the natural zero point on t
time scale, the time at which~ignoring diffusion and the
finite width of the interfaces!, the domain size would be zer
FIG. 2. Persistence timeline.



-

to

as

d
el
lu
w

h
vo
ar
a

u
.
ur
e

u

t

e

ip
e

te

tic
ata

. In

d
r
r,

ce

lor

e

he
e
is
ics,

hey
sted

itut-

PRE 61 4031PERSISTENCE EXPONENTS IN A THREE- . . .
so that, in effect, every site flipped att5t int . Hencefortht int
will be usually be set to zero, to simplify the algebra.

Equation~2! is an integral equation in two unknown func
tions, P(t,t1) and PF(t). A solution for P(t,t1) can be ob-
tained by making some assumptions about the asymp
form of the simpler quantity,PF(t), for the 3D hydrody-
namic system. The dynamics are determined by the b
scaling growth law,L5b(t2t int)

a, where the prefactorb
depends on the system parameters~density, viscosity, inter-
facial tension!. Once the initial diffusive period is over, an
the domains of red and blue fluid are separated by w
formed interfaces, lattice sites change color from red to b
when an interface moves across them as the domains gro
size. The flip rate,PF(t), is thus given by the rate at whic
the interface moves through the system sweeping out a
ume of points that change color. So, an estimate of the
of the interface, and its average speed, will yield an estim
for PF(t). This is the ‘‘flip-rate model.’’

The area of the interface is given approximately byA(t)
5cLV/L, whereV is the system volume andcL is a prefactor
of order unity. As the system coarsens, the interfaces m
move to accommodate the enlargement of the domains
long as there is only one length scale in the domain struct
the speed at which the interface moves will be of ord
dL/dt. Also, it has been shown@9# that the average fluid
velocity is comparable in magnitude withdL/dt, so the
speed of the interface can be estimated bycv dL/dt, where
cv is another prefactor of order unity. The volume swept o
per unit time will beA(t) cv dL/dt. Combining bothcL and
cv into a single prefactor,c, the flip rate per unit volume will
be approximately,

PF~ t !5c
1

L

dL

dt
5

ca

t
. ~3!

This approximation forPF(t) diverges att50. In the dis-
crete time of our simulations, we start with time stept51 so
no divergences arise; in the continuum approximations i
appropriate to start at timet50, thus we will need to take
care that no integrals diverge at their lower limits.

SubstitutingPF(t)5ca/t into Eq. ~2! gives

E
0

t

dt1
t

t1
P~ t,t1!51, ~4!

where have sett int50. Equation~4! has solutions forP(t,t1)
of the form

P~ t,t1!5~b21!t1
b21t2b, b.1, ~5!

whereb is an arbitrary exponent, as can readily be verifi
by substitution. We haveP(t,t1)→0 for t1→0 so the inte-
gral is well behaved att150. The condition,

E
t1

`

dt P~ t,t1!51, ~6!

~i.e., all sites do, eventually, flip! is also satisfied, soP(t,t1)
is a properly normalized probability.
tic
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An expression can now be written down for the ‘‘no fl
fraction,’’ NF(t/tstart), which is the fraction of sites that hav
not changed color sincetstart,

NF5E
0

tstart
dt1 E

t

`

dt2 P~ t2 ,t1!PF~ t1!, ~7!

i.e., we count every point whose last flip was beforetstart and
whose next flip is after timet. Substituting for PF and
P(t2 ,t1) gives,

NF5caE
0

tstart
dt1 ~b21!t1

b22E
t

`

dt2 t2
2b ,

5
ca

u S tstart

t D u

, u.0, ~8!

settingu5(b21) as the persistence exponent. The flip-ra
model has thus provided an expression forNF that has the
exponent,u, in the prefactor as well as being the asympto
power of the decay. This puts helpful constraints on the d
analysis, although for it to be really useful, the prefactor,c,
in Eq. ~3! has to be pinned down as precisely as possible
a log-log plot,

logNF5 log~ca/u!2u log~ t/tstart!, ~9!

so plottingNF againstt/tstart should give a straight line when
viewed log-log, with slope2u, for t@tstart. The initial data
near t*tstart will depart from this asymptotic behavior an
tend toNF51 because by definition nothing flipped yet fo
t5tstart. The fit to the asymptotic slope should, howeve
have an intercept atca/u for t5tstart.

It is possible to go on to define a hierarchy of persisten
quantities, of whichNF is the first @2#. The ‘‘one flip frac-
tion,’’ OF is the density of points that have changed co
exactly once since timetstart. Within the flip-rate model, an
expression forOF for this system can be derived in the sam
way as forNF ;

OF~ t/tstart!5E
t

`

dt2 E
tstart

t2
dtf E

0

tstart
dt1 P~ t2 ,t f !

3P~ t f ,t1!PF~ t1!. ~10!

The ‘‘one flip’’ occurs at timet f with tstart,t f,t2. The
probability of an initial flip att1 with 0,t1,tstart, then flip-
ping at timet f is P(t f ,t1). The probability of flipping again
at time t2 is then P(t2 ,t f)P(t f ,t1), provided the two flip
events are independent of each other~so the probabilities can
be multiplied!. In other words, this model assumes that t
flip probability P(t2 ,t f) is only dependent on the last tim
the site flipped, so it has no memory of earlier flips. Th
requires a Markov process for the coarsening dynam
which Derridaet al. and Majumdaret al. @6,5# claim is not
generally the case for the nonhydrodynamic systems t
have considered. This therefore constitutes another unte
assumption in the flip-rate model described here. Subst
ing for PF andP(t2 ,t1) as before gives
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OF5E
t

`

dt2 E
tstart

t2
dtf E

0

tstart
dt1

ca

t1
u

t f
u

t2
u11

u
t1
u

t f
u11

5
ca

u S tstart

t D uF12 lnS tstart

t D uG , ~11!

after integrating by parts. This has a dominant logarithm
term so it does not have an asymptotic power law decay.~In
contrast, in the 1D Ising model,OF appears to have the sam
asymptotic behavior asNF , see Refs.@2,3#.! This could, of
course, be a result of the limitations of the flip-rate mod
however, the simulation results suggest that the asymp
behavior ofOF is different from that ofNF ~see Figs. 3 and
4!. Again, this expression is only valid fort@tstart since
OF→0 for t→tstart. As with NF , the ~same! critical expo-
nentu appears both as an exponent and as a prefactor,
providing an extra constraint on any fits to simulation da

Nothing in the theory so far is specific to three spa
dimensions. However, in two-dimensional binary fluid sy
tems, the interface does not completely interconnect@20#, so
the approximationPF5ca/t is unlikely to work without
modification. Furthermore, 2D hydrodynamic coarsen
shows nonscaling features@20# which make the analysis

FIG. 3. No-flip fraction,NF , for all runs.

FIG. 4. No-flip fraction,OF , for all runs.
c
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more complicated and difficult to interpret both theoretica
and numerically. Therefore, since our main work is with t
three-dimensional system, the two-dimensional form of
theory will not be pursued further here.

IV. NUMERICAL ANALYSIS

The flip-rate model just described will now be used
guide the analysis of the data from our spinodal decomp
tion simulations. The data from the largest (2563) runs is
typically saved every 200 to 500 time steps,Dtstride. It is also
coarse grained from a 2563 lattice down to 1283 by averag-
ing over groups of eight neighboring lattice points. This da
can be used to calculate the four key quantities discusse
the previous section,PF , P(t1 ,t2), NF , andOF , provided
the spatial and temporal coarse graining makes no signifi
difference to the results.

To investigate temporal coarse graining, a special run o
963 grid was done with the key quantities calculated eve
time step. This extra computation significantly slows dow
the computer run time so it is not practical to perform larg
simulations with single-step calculations. The results from
single-step calculation were then compared with the sa
run analyzed over a stride of 100 time steps, see Fig. 5.
result of this comparison showed excellent agreement
tween the single-step and strided estimates ofPF(t). In fact,
the errors introduced by analyzing only everyDtstride steps
rather than every single step arise from miscounting sites
flip more than once in that period. If the flip rate,PF(t), is
small then the number of multiple flips will be much small
still, so the errors will negligible. In all runs analyzed,PF
was found to be small even over the largestDtstride used, i.e.,
PFDtstride!1 ~a value of 1 would mean every site flipped!.

The shape ofPF(t) in Fig. 5 for times t,tstart clearly
shows a transition from diffusive to hydrodynamic behav
in the initial fall ~diffusion!, rise ~interfaces start to move!,
and fall again~hydrodynamic!. Thus PF(t) is a sensitive
indicator of the system dynamics, and the choice oftstart
51500 in this 963 system is confirmed to be located, a
desired, near the beginning of the hydrodynamic regime

FIG. 5. Flip rate,PF , for a 963 system, single step~dots! and
Dtstride5100 steps~crosses!.
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PRE 61 4033PERSISTENCE EXPONENTS IN A THREE- . . .
not too close to the transition from diffusive behavior. T
effect of spatial coarse graining was checked by compa
the results of analyzing strided data from 1283 and 2563 runs
with identical parameters apart from system size. Excel
agreement was found everywhere except in the tail
P(t,tstart), which can be explained by poor statistics in th
region. The conclusion, therefore, is that spatial and temp
coarse graining on the scale used in this analysis does
introduce significant errors into the results.

From the main simulation data, good statistics forPF ,
NF , andOF can be obtained, as every lattice point can
assessed according to if/when it next flips aftertstart. The
statistics are not so good for estimatingP(t,tstart), because
the reference base is reduced to only those sites that
betweentstart andDtstride rather than the whole system; reca
that P(t,tstart) refers to the first flip happening exactly
tstart.

V. FLIP RATE

In order to make full use of the model presented in S
III, it is necessary to investigate whether the flip rate rea
follows the approximate theoretical expression,PF5ca/t,
Eq. ~4!, and whether the prefactor,c, can be evaluated suffi
ciently accurately from the simulation data to allow
strongly constrained fit to be done foru in the analysis ofNF
and OF . Figure 6 showsPF for each simulation run in a
log-log plot, with 1/t and 1.5/t also shown for comparison
The prefactor,c, clearly varies somewhat over time, and wi
a, although the variation with time can partly be explain
since early times,t;tstart, are expected to differ from
asymptotic behavior.

To determine the values and variation inc more accu-
rately, a linear plot of the flip rate,PF , scaled by (t
2t int)/a is shown in Fig. 7. It can be seen that the resu
roughly split into two groups corresponding to the ru
found to be in the viscous and lower crossover regionsL0
*0.1), with prefactors aroundc.1.25, and runs in the iner
tial regime (L0&0.01), withc.2.2.

FIG. 6. Flip rate,PF , for simulation runs as identified byL0

values in key, log-log plot. Also shown for comparison, 1/t and
1.5/t.
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If this difference in the value ofc is real, it implies that
the geometry of the separating domains is different betw
the viscous and inertial regimes. Any such difference is
apparent to the eye in visualizations of the interface@21#.
There is some evidence from analysis of the structure fa
@9# that there is a structural difference in the domain str
ture, but it is unclear whether this is enough to account
the observed difference in the value ofc. However, there is
another possible interpretation of the data, which is that
flip rate actually exceedsca/t for the inertial regime runs.
For once the viscosity is low enough for inertial effects
become significant, the interface may exhibit capillary ex
tations. This oscillation of the interface could increase
measured flip rate as sites near the interface repeatedly
back and forth, but without contributing to the sweeping th
removes sites from the ‘‘no flip’’ category. If capillary exc
tations have a significant effect on the flip rate, this part
the flip rate needs to be discounted in the subsequent fit
to determine the persistence exponent. Since the exten
any excess flip rate cannot be determined at this stag
variable prefactor,c, has therefore been carried through t
fitting process foru.

VI. PERSISTENCE EXPONENT

The ‘‘no flip fraction,’’ NF , is the primary quantity of
interest in this work, being the quantity from which the pe
sistence exponentu, is defined,NF;t2u. The simulation re-
sults forNF , with the time scaled as (t2t int)/tstart and points

TABLE I. Summary of results forc andu.

L0 a c u

0.0003 0.67 1.5 – 1.9 1.20 – 1.23
0.00095 0.67 1.5 – 2.2 1.20 – 1.32
0.01 0.75 1.3 – 1.9 1.25 – 1.40
0.15 0.80 1.0 – 1.5 1.15 – 1.24
0.95 0.95 0.85 – 1.4 1.20 – 1.40
5.9 1.0 0.85 – 1.4 1.25 – 1.50
36 1.0 0.85 – 1.3 1.30 – 1.55

FIG. 7. Flip rate,PF , rescaled by (t2t int)/a on a linear plot so
values of the prefactor,c, can be read off the ordinate axis.
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for times at whichL,Lmin or L.64 removed, are plotted in
Fig. 3. The runs in the inertial regime have tails that fall
aroundNF50.08, while the viscous runs stop~reach domain
size L564) at aroundNF50.15. There is thus barely on
decade within which to estimate the slope of the tail. A
though a simple linear fit cannot produce a very accur
result, superficial inspection suggests thatu is slightly
greater than unity, and fairly reproducible.

If we could use a fixed value of the prefactor,c, with
confidence, the fit could be constrained to intercept atca/u,
Eq. ~9!. Instead, a family of fits was done@21#, covering a
range of values of the prefactor,c, and these were compare
with a similar family of fits for the one flip fraction,OF . As
can be seen in Fig. 4,OF at best falls to only 0.2 by the en
of the simulation data, so it cannot be regarded as hav
reached asymptotic behavior yet. TheOF data was therefore
used only to confirm the direction in whichNF is tending
towards its asymptote. From this fitting procedure, a rang
consistent values of bothc and u were obtained, and thes
are summarized in Table I.

A sample plot for the run withL050.0003 withNF and
the fitted expression in Eq.~8!, with high, median, and low
values of c and u, is shown in Fig. 8. Fits toP(t,tstart)
5u/t(tstart/t)

u were also done, producing values ofu con-
sistent with those determined fromNF and OF . Since
P(t,tstart) does not depend onc or a, this is a useful check
for consistency, but because of the poorer statistics
P(t,tstart), no improvement in the range of values foru was
obtained by this extra step.

The complete set of estimates foru from Table I is shown
against the growth exponenta in Fig. 9, with error bars
indicating the range of values obtained. The results are c
sistent with the persistence exponent,u, lying somewhere
around 1.37 for the viscous regime and 1.23 for the iner
regime. A single value ofu51.333 is also just about consis
tent with the data, although some variation witha seems
more likely.

The prefactor,c, could be as low as 1.0 for viscous run

FIG. 8. Fitted curves forNF for the run withL050.0003. The
no flip fractionNF ~squares! calculated from the numerical data
shown with the upper, median, and lower fits to Eq.~8! using,
respectively, c51.9, u51.23 ~dashed line!; c51.7, u51.215
~solid line!; andc51.5, u51.21 ~dotted line!; from Table I.
-
te

g

of
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and rises nearer to 2.0 for the inertial regime. However
value ofc52.2 as implied by the measured flip rate for th
inertial regime appears to be inconsistent with the per
tence data forNF , OF , andP(t,tstart). The flip rate is thus
sufficiently sensitive to distinguish between viscous and
ertial regime dynamics, and suggests the presence of s
mechanism such as capillary waves in the inertial regime
raises the measured flip rate above that predicted by
growth of the domains.

VII. CONCLUSIONS

In this investigation of the persistence exponents for a
hydrodynamic spinodal system, it has been observed tha
decay of the ‘‘no-flip fraction,’’ NF , is a power law~as
opposed to exponential!. It has not been possible to produc
a very accurate determination of the persistence exponenu,
but limits have been placed on the likely value, and it h
been shown that some variation with the effective grow
exponent,a, as one crosses slowly from viscous (a51) to
inertial (a52/3) coarsening, should be allowed for in an
future studies. The best estimate ofu for the viscous regime
(a51), is u51.3760.2. From the point of view of funda
mental critical exponents, the value ofu in the inertial re-
gime is perhaps more significant, since this is~at least on
current evidence! the asymptotic behavior for spinodal de
composition, and here the best estimate isu51.2360.1.
These represent the first estimates ofu in a system domi-
nated by hydrodynamics rather than diffusion. However,
error limits quoted here do not allow for systematic erro
arising from the use of the flip-rate model itself. More acc
rate determination from simulations would likely require si
nificantly larger system sizes, which is difficult to envisa
at present computing power.
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FIG. 9. Persistence exponent,u, against spinodal growth rate
exponent,a, from simulation runs. The error bars are the range ou
from Table I, and the error estimates fora of 10% ~viscous regime!
and 5%~crossover and inertial regime! @9#.
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